
1. Introduction
Nitrate in drinking water has been identified as a pollutant that can be hazardous to human health since the 
mid-1940s, when nitrate ingestion from well water was linked to fatal blue baby syndrome (Comly,  1945; 
Faucett & Miller, 1946; Ferrant, 1946). Since then, regulatory agencies in the US and World Health Organization 
(WHO) have imposed similar limits of 10 mg/L NO3-N (US) and 50 mg/L NO3 (WHO, or 11.3 mg/L NO3-N) 
for drinking water (USEPA, 2021; WHO, 2017). Epidemiological reviews (Ward et al., 2005, 2018) identified 
multiple studies linking drinking water with nitrate below these regulatory limits to a variety of cancers (Inoue-
Choi et al., 2015; Jones et al., 2016; McElroy et al., 2008; Schullehner et al., 2018; Stayner et al., 2021; Ward 
et al., 2010) and adverse pregnancy outcomes (Brender et al., 2013; Coffman et al., 2021; Holtby et al., 2014; 
Manasaram et al., 2006; Sherris et al., 2021; Weyer et al., 2014), although some studies report no association 
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patterns and concentrations are available. Using an extensive regulatory data set of over 100,000 nitrate 
drinking water well samples, we developed new maps of groundwater nitrate concentrations from 76,724 wells 
in Michigan's Lower Peninsula, USA for the 2006–2015 period. Kriging, a geostatistical method, was used to 
interpolate concentrations and quantify probability of exceeding relevant thresholds (>0.4 [common detection 
limit], >2 mg/L NO3-N). We summarized this probability in small watersheds (∼80 km 2) to identify correlated 
variables using the machine learning method classification and regression trees (CARTs). We found 79% of 
wells had concentrations below the detection limit in this analysis (<0.4 mg/L NO3-N). In the shallow aquifer 
(focus of study), 13% of wells exceeded 2 mg/L NO3-N and 2% exceeded the EPA maximum contaminant level 
of 10 mg/L. CART explained 40%–45% of variation in each model and identified three categories of critical 
correlated variables: source (high agricultural nitrogen inputs), vulnerable soil conditions (low soil organic 
carbon and high hydraulic conductivity), and transport mechanisms (high aquifer recharge). These findings add 
to the body of literature seeking to identify communities at risk of elevated nitrate and study associated adverse 
health outcomes.

Plain Language Summary High levels of nitrate ingested via drinking water can lead to a variety 
of adverse health outcomes, including blue baby syndrome at high levels (>10 mg/L NO3-N), a variety of 
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vulnerable soils (low organic carbon content and soil permeability to water flow), and contaminant transport 
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(Mattix & Winchester, 2007; Mueller et al., 2004; Waller et al., 2010; Winchester et al., 2009). Increased risk 
(expressed via odds ratio or hazard ratio) could be found at concentrations as low as 0.7–5 mg/L NO3-N (Espe-
jo-Herrera, Gracia-Lavedan, Boldo, et al., 2016; Espejo-Herrera, Gracia-Lavedan, Pollan, et al., 2016; Fan & 
Steinberg, 1996; Holtby et al., 2014; Inoue-Choi et al., 2015; Schullehner et al., 2018; Temkin et al., 2019). As 
these health risks emerge, it is increasingly important to understand what environmental conditions lead to high 
drinking water nitrate, particularly at levels below current regulatory standards.

Groundwater is a critical resource in the United States, providing drinking water to over one third of the US 
population in 2010 (DeSimone et al., 2015). Available data shows many agricultural areas of the United States 
have high groundwater nitrate concentrations, with 3.6% of public water systems using groundwater with EPA 
violations from 1994 to 2015 (Pennino et al., 2017, Table S4) and 1% of the nation's 43 million private well users 
are in regions where violations are expected (DeSimone et al., 2015; Ransom et al., 2021). Private drinking water 
wells are used by 14.5% of United States households (Johnson et al., 2019). Michigan, a midwestern state, has 
the most domestic wells of any state in the United States with almost 2.5 million (Johnson et al., 2019). However, 
broad accessibility to data for users to analyze risks below regulatory levels is limited due to variability in regu-
lations combined with the effort, cost, and privacy concerns related to sampling private drinking water wells. In 
Michigan, as part of a mandated groundwater monitoring program (Michigan Compiled Law 324.8713 [MI MCL 
324.8713]), chemical analyses are mandated when new residential wells are drilled (Michigan Rule 562.412 [MI 
R 562.412]). Moreover, permits for new development will be rejected if concentrations exceed half the maximum 
contaminant level (MCL) of 10 mg/L NO3-N and are expected to rise due to factors such as geology and land use 
(MI R 562.414). These requirements resulted in an extensive government-maintained database of groundwater 
chemistry data for Michigan.

Nitrate concentrations in the subsurface are highly heterogeneous, related to variable loading pulses, geologic 
properties, and travel times through aquifers (Böhlke, 2002; Rivett et al., 2008; Schilling & Jacobson, 2010; Van 
Meter & Basu, 2015). Nitrate in groundwater is primarily sourced from anthropogenic alterations/additions to 
the global nitrogen cycle, including fertilizer, manure, septic systems, fixation from legumes, and atmospheric 
deposition (Galloway et al., 2004; Vitousek et al., 1997). Variable groundwater travel times create a time lag or 
legacy, complicating the risk of contaminated drinking water as nitrate from surface inputs may take decades to 
propagate through the system (Fenton et al., 2017; Kim et al., 2020; Martin et al., 2017; Van Meter & Basu, 2015; 
Vero et al., 2018). It is critical to identify populations at risk and adapt current management practices to mitigate 
future threats to health (Ascott et al., 2021; Hansen et al., 2017; Martin et al., 2021).

The complexity of the groundwater system and challenge of wide-spread, routine sampling has led research-
ers to use a variety of index-based (e.g., DRASTIC and DRASTIC-P, Aller,  1987; DRASTIC-N, Voutchk-
ova et  al.,  2021), statistical (e.g., logistic regression, Helsel & Hirsch,  1992; non-linear regression, Nolan & 
Hitt,  2006), and process-based modeling (e.g., ANSWERS, Beasley et  al.,  1980; HYDRUS-1D, SCANVA, 
Hansen et  al.,  2016; Šimůnek & van Genuchten,  2008) methods to identify vulnerable aquifers (Liggett & 
Talwar, 2009; Machiwal et al., 2018). Recently, machine learning methods like classification and regression trees 
(CARTs) (Burow et al., 2010; Uddameri et al., 2020), boosted regression trees (Motevalli et al., 2019; Nolan 
et al., 2015; Ransom et al., 2017, 2021; Uddameri et al., 2020), and random forest (Messier et al., 2019; Nolan 
et al., 2014; Pennino et al., 2020; Tesoriero et al., 2017; Uddameri et al., 2020; Wheeler et al., 2015) have been 
used to link large datasets of nitrate samples with potential driver variables to predict concentrations at non-sam-
pled locations. These tree-based algorithms assess the importance of different variables for nitrate concentrations, 
which can help decipher the underlying conditions that lead to elevated concentrations in a region. Studies have 
reported the most significant correlative variable categories are related to nitrogen inputs (Nolan et al., 2015; 
Nolan & Hitt, 2006; Pennino et al., 2020; Tesoriero et al., 2017), geologic properties (Messier et al., 2019; Mote-
valli et al., 2019), geochemical conditions (Ransom et al., 2017), and well depths (Uddameri et al., 2020; Wheeler 
et al., 2015), although all studies utilize a combination of key variables. These tree-based methods can also be 
used to both predict concentration in unsampled areas and identify populations at risk.

Here, we analyze potential drivers of groundwater nitrate concentrations with CART analysis using an exten-
sive data set of nitrate measurements from drinking water wells across Michigan's Lower Peninsula (Figure 1). 
Over 100,000 samples from 76,724 unique wells were used to characterize and interpolate nitrate concentrations 
across the region using the geostatistical method Empirical Bayesian Kriging (EBK) (Hussain et al., 2010). We 
create maps of conservative exceedance probabilities for two concentration levels using EBK. By using kriging, 
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Figure 1. Study area with: (a) locator map within the Continental United States with Michigan's Lower Peninsula (study 
area) highlighted in red and labeled “LP”. The Upper Peninsula is labeled above “UP” and mostly obscured by the study 
area boundary, (b) land use land cover (National Land Cover Database, Homer et al., 2015), (c) soil hydraulic conductivity 
estimates (Ksat), (d) soil organic carbon, (e) recharge, and (f) nitrogen inputs from SENSEmap (Hamlin et al., 2020a, 2020b). 
Breaks in legends are chosen using quantile intervals, where each color represents 16.7% of the data.
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we create a smooth surface of nitrate concentrations that reduces effects of noise and spatial clustering in the 
original data set. We then summarize this map at the small surface-watershed (HUC12, U. S. Geological Survey 
[USGS], 2013) scale and analyze relationships among 89 variables describing soil and geologic properties, nitro-
gen loads, land use, and well characteristics using CART. CART, a tree-based machine learning algorithm, illu-
minates correlated variables in an easily interpretable manner. Kriging reduces noise in the highly variable data 
followed by CART to analyze patterns. Our methods make use of the high data density and categorize nitrate 
concentration at a management-appropriate scale (e.g., watershed rather than individual well). To our knowledge, 
this is the first public visualization and analysis of nitrate from Michigan's massive regulatory data set. The 
objectives of this work are to:

1.  Map nitrate concentrations in Michigan's Lower Peninsula for the 2006–2015 period using over 76,000 unique 
drinking water wells with more than 100,000 samples

2.  Assess potential drivers of nitrate concentrations using correlations between these values and landscape char-
acteristics at the small watershed scale

With this extensive data set, we developed maps of groundwater nitrate concentrations and linked them to the 
physical characteristics and land management. An improved understanding of groundwater nitrate concentrations 
at lower thresholds and their potential drivers can help inform management strategies, quantify nitrate exposure, 
and identify areas of current and potentially future health concerns.

2. Methods
2.1. Study Area

Michigan is located in the Midwestern United States and bordered by four of the five Laurentia Great Lakes 
(Figure 1a). Due to data availability in the Upper Peninsula of Michigan, we limited our analyses to the state's 
104,019 km 2 Lower Peninsula (hereafter LP). Coarse-textured glacial deposits cover much of the LP, with higher 
clay and silt percentages in the central and eastern LP that was deposited after prehistoric proglacial lakes drained. 
These Quaternary-age glacial drift aquifers are commonly used for private drinking water wells in the region 
(Michigan Water Wells for Wellogic, 2019). Annual precipitation for the LP ranges from ∼700 to 1,100 mm/yr 
(PRISM Climate Group, 2012).

Land use within the LP ranges from urban areas and intensive agriculture to large swaths of forests and wetlands 
(Figure 1b, Homer et al., 2015). Metropolitan areas such as Detroit, Kalamazoo, Lansing, and Grand Rapids 
are home to most of Michigan's over 9 million residents (U.S. Census Bureau, 2010). Much of the land area of 
the southern LP is managed for agriculture in major row- and field-crops, including corn-soy rotations, wheat, 
and hay, with orchards, vineyards, and other fruit crops along the Lake Michigan coastal region (USDA (2012), 
USDA Census of Agriculture). North of 44°N, the LP is largely forested and more sparsely inhabited.

2.2. Geologic and Landscape Characteristics

We identified several geologic and landscape characteristics that potentially drive or modulate groundwater 
nitrate concentrations. Below, we describe the datasets and methods used to create this geographical information 
for further use in our analyses. Summaries of data sources can be found in Table 1.

Soil:We used the USDA gSSURGO database (Soil Survey Staff, 2020) to create maps of 28 soil characteristics. 
Plant-available water storage (m 3 water/m 3 soil) and soil organic carbon (SOC) (g C/m 3 soil) were derived 
from the value-added attributes tables (valu1 table) distributed with gSSURGO. SOC content is the mass of 
organic carbon per unit volume of soil, for the six available layers (0–5, 5–20, 20–50, 50–100, 100–150, and 
150+ cm). Soil textural characteristics (% sand, % silt, % clay) define the particle size distribution within the soil 
column. Saturated vertical hydraulic conductivity (KSat, mm/hr), which relates to how quickly water can move 
through the soil profile, was estimated from soil textural characteristics using the v1 ROSETTA database (Schaap 
et al., 2001). Soil textures and KSat were computed from the gSSURGO data for four layers (0–20, 20–50, 50–100, 
and 100–200 cm).

Aquifer:Aquifer hydraulic conductivity (HK) was estimated by the Michigan State University Remote Sensing 
and GIS group using well log descriptions of sediment texture and pump tests, as reported in the Michigan 
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Wellogic Database (Michigan Waterwells for WELLOGIC dataset, 2019). To extend these point-based measure-
ments to the rest of Michigan, we used the geometric mean of well-based K for each Quaternary geology polygon 
(Farrand & Bell, 1982). We used the arithmetic average of HK values for other polygons of similar geologic class 
for polygons without wells present.

Groundwater recharge was estimated for the study area following an approach described in Luscz et al. (2017), 
similar to methods reported by the USGS (Holtschlag,  1997). Briefly, linear relationships between observed 
precipitation and predicted recharge were calculated using Landscape Hydrology Model (LHM) outputs for a 
watershed in Michigan (Hyndman et al., 2007; Kendall, 2009; Wiley et al., 2010). Modeling was performed over 
a 28-year period for approximately 20,000 km 2 within and around the Muskegon HUC8 watershed in west-central 
LP. This watershed has diverse geologic and land use characteristics that represent conditions across the remain-
der of the LP. Within all five major land use classes (urban, agricultural, grass, deciduous, coniferous), linear 
regressions were developed to quantify the fraction of annual precipitation that becomes aquifer recharge as a 
function of saturated soil hydraulic conductivity.

Background groundwater nitrate concentrations are extremely low, ranging from 0 to 0.27 mg/L NO3-N with a 
median of 0 mg/L NO3-N (Dumouchelle et al., 1987). Groundwater resources in Michigan include areas with 
both oxic and anoxic conditions in shallow and deep groundwater, though deep groundwater tends to be more 
frequently anoxic than shallow (Erickson et al., 2021). This study does not explicitly incorporate redox condi-
tions, due to data limitations.

LULC and Agriculture:Land Use/Land Cover (LULC) variables were summarized from the 2011 National Land 
Cover Database (NLCD), shown in Figure 1a (Homer et al., 2015), and USDA Cropland Data Layers (CDLs). 
Both individual land use classes as reported in NLCD and aggregated land use classes (e.g., urban, forest, agricul-
ture, wetland) were used within our analyses. LULC classes were represented as percent of total watershed area. 
Cropland variables derived from the CDL included the median percent of land in corn, soy, or other agriculture 
from 2010 to 2015, the available years within our study period (USDA-NASS, 2015).

Nitrogen Inputs and Loading:The Spatially Explicit Nutrient Source Estimate map (SENSEmap) provided esti-
mates of total nitrogen inputs to the land surface, which quantifies point sources and six non-point sources of 
nitrogen inputs to the landscape by synthesizing literature, remote sensing products, government records (e.g., 
US Census, US Agricultural Census), and modeling products (e.g., estimates of county level fertilizer loads; 
Hamlin et  al.,  2020a,  2020b; Luscz et  al.,  2015). Non-point sources include atmospheric deposition, chemi-
cal agricultural fertilizer, manure, chemical non-agricultural fertilizer, septic tanks, and nitrogen fixation from 

Data type Data source Author Time
Spatial 

resolution

Groundwater nitrate concentration Well Chemistry MI EGLE 2006–2015 Well Points

Well properties Wellogic MI EGLE 2006–2015 Well Points

Nitrogen surface inputs SENSEmap Hamlin et al. (2020a, 2020b) 2008–2015 30 m

Nitrogen groundwater inputs SENSEflux Luscz et al. (2017), Martin et al. (2021) 2008–2015 120 m

Soil properties gSSURGO USDA Natural Resources Conservation Service, Schaap 
et al. (2001)

10–30 m

Aquifer hydraulic conductivity Wellogic (Derived) Wellogic, Farrand and Bell (1982) 120 m

Recharge Modeled Hyndman et al. (2007) 2010 120 m

Land use/land cover National Land Cover Database Homer et al. (2015) 2011 30 m

Water table depth Interpolated from Wellogic Martin et al. (2021), Supplemental 1980–2016 30 m

Glacial drift thickness USGS Map 3392 Soller and Garrity (2018) 500 m

Crop variables Cropland data layer USDA National Agricultural Statistics Service 2010–2015 30 m

Note.A summary of data types, sources, authors, representative time, and spatial resolution. Detailed variables found in each group can be found in Table S2. MI EGLE 
is the abbreviation for Michigan Department of Environment, Great Lakes, and Energy.

Table 1 
Data Sources
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legumes. SENSEflux (Martin et al., 2021) is an expanded and updated model based on previous work by Luscz 
et  al.  (2017) that implements a statistical transport model to quantify the amount of nitrogen that survives 
transport to the Great Lakes coastline after attenuation along surface and groundwater pathways. Here, we use 
SENSEmap inputs to the land surface (kg/ha/yr) and SENSEflux estimates of mobile nitrogen in groundwater 
(kg/ha/yr), for all sources. Our estimates are representative of the 2008–2015 period, consistent with this analysis' 
2006–2015 period.

2.3. Drinking Water Well Data

The Michigan Department of Environment, Great Lakes, and Energy (EGLE) provides a publicly available data-
base of drinking water well information called Wellogic. Information in this database has been digitized from 
well boring logs and contains all wells drilled since 1996. Wells drilled prior to 1996 have partial records due 
to variability in county-by-county archival digitization efforts. Data recorded includes drilling date, well screen 
intervals, and aquifer properties. In this study, we utilized both the spatial location of the wells and aquifer infor-
mation. Drinking water well chemistry data was obtained via a Freedom of Information Act request from EGLE 
in December 2019. This database included over 3.6 million samples of various chemicals from municipal and 
private drinking water wells across the state collected from 1984 to 2019. Addresses included in the database 
were inconsistently documented and lacked additional spatial reference such as latitude-longitude coordinates. 
Quality control/quality assurance (QA/QC) procedures were developed to standardize address formats using 
OpenRefine and were then assigned coordinates using geocoding in ArcGIS Pro 2.5 (ESRI, 2020a). After QA/QC 
procedures, 175,090 unique wells with 511,065 samples remained in the 1984–2019 data set. For this study, only 
samples collected from 2006 to 2015 were used to limit temporal “noise” and focus on a time period represented 
by corresponding data (e.g., SENSEmap and SENSEflux). This resulted in 121,492 samples from 76,724 unique 
wells for our final data set. Wells with multiple samples available in the study period (23%) were represented by 
the geometric mean.

2.4. Interpolating Groundwater Nitrate Concentration With Kriging

We used kriging, a geostatistical method, to interpolate a continuous surface of groundwater nitrate concentra-
tions, and surfaces of the probability of exceeding 0.4 mg/L (common detection limit in data set) and 2 mg/L 
NO3-N (associated with increased health risk). By first using kriging in this analysis, we smooth the noise found 
in the large data set and reduce the effects of imbalanced sampling across the study area. Due to the large spatial 
extent, variable sampling density, and variation in concentration measurements, we used EBK in ArcGIS Pro 
2.5 to automate the interpolation process (ESRI, 2020b). This method iteratively produces semivariograms for 
subsets of the data to tailor the kriging function to each neighborhood of points, thus removing user's manual 
control of fitting a semivariogram function to the entire data set (ESRI, 2020b; Hussain et al., 2010). Kriging 
was performed with 250 m cells using multiple simulated exponential semivariograms. Further details on kriging 
parameters and examples of semivariogram models can be found in Text S1, Figure S1, and Table S1 in Support-
ing Information S1.

Probability kriging computes the probability of a cell's kriging prediction to exceed a given threshold, and thus 
provides additional information beyond kriging predictions. The probability kriging option within EBK was 
used here to test two thresholds of exceedance: 0.4 (the most common detection limit in the data set, or lowest 
detectable concentration of nitrate by the analytical machine) and 2 (a value from the range of lower concentration 
risks; Ward et al., 2018; Temkin et al., 2019). Our samples represent either: (a) measurements taken from new or 
existing GW wells, or (b) public drinking water supplies. In either case, these wells have been developed to be 
safe drinking water sources and are thus likely to avoid both locations and depths within the aquifer with known 
high NO3 concentrations. In contrast, measurements below 5 mg/L NO3-N do not trigger any state actions and are 
thus likely more representative of both current and future water supplies.

Although kriging produces estimates for every cell within the study area, estimation error rises with distance from 
data points. Thus, we only included kriging results within 3 km of a sample point (the correlation length as deter-
mined separately from simple kriging) to mask areas where kriging does not have sufficient data and estimates 
approach the data set mean rather than being influenced by nearby points.
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2.5. Classification and Regression Trees (CART)

CART analysis was used to explore nonlinear statistical relationships between groundwater nitrate concentrations 
and potential driver variables (De’Ath & Fabricius, 2000). Although CART can be used for prediction, it is used 
here as a method for data exploration. We used rpart 4.1.15 in R version 3.6.0 to implement all CART analysis 
(R Core Team, 2019; Therneau et al., 2019). CART performs nested hierarchical “splits” to a data set using a 
single response variable and a suite of driver variables as inputs. CART starts with the entire data set and breaks 
the response variable into two groups based on thresholds in the driver variable that minimizes within-group 
variance. Each resultant group is then split again (the split is referred to as a node) based on whichever driver 
next minimizes variance. These recursive splits create the inverted “tree” shape common to decision trees. CART 
stops splitting when the “pruning” criteria is reached. We specified that pruning would end when an individual 
split did not increase the performance by >3% (complexity parameter, cp > 0.03); above 3%, the final tree had 
very few splits, with little explanatory power, while below 3% the smallest nodes had very few members. Here, 
as our intent was to use CART to illuminate spatial patterns across watersheds and relationships to potential 
driver variables, we did not employ a test/validate/train architecture, but rather chose to maximize the statistical 
power within the data set and used our entire sample to train the tree. The final CART results include the optimal 
decision tree and terminal groups, a measure of variance explained (Proportional reduction in error [PRE]), and a 
list of “competitor” and “surrogate” options for each split. PRE, here reported relative to the training data set fit, 
behaves similarly to the coefficient of determination (R 2) used in linear regression, ranges from 0 to 1 and corre-
sponds to the proportion of data set variance explained. Competitor splits are defined for each node and would 
divide the data into groups with a similar PRE, but can create different groups than the optimal split. Surrogate 
splits involve other drivers that would split the group in a similar manner to the optimal split. Analysis of compet-
itor and surrogate splits can provide extended understanding of the correlation structure within the data, though 
it was not included here for brevity. Although CART can be optimized by fine-tuning model parameters,we used 
a manual calibration for data exploration. If prediction is the intended use of CART outputs, additional model 
tuning would be required.

We summarized driver and response data at the watershed level using the USGS Watershed Boundary Data 
set Hydrologic Unit Code system; specifically, at the HUC12 scale, which for our study area includes 1,048 
watersheds with an average area of ∼80 km 2 (USGS, 2013). Within watersheds, summaries were compiled using 
medians for all variables except land use and soil texture, which were reported as areal proportions that sum to 
one. Nutrient source variables were also summarized with means. Median probability of threshold exceedance in 
each watershed was used as the response variable. Driver variables included representatives from all variables in 
Table 1. Detailed descriptions of all 89 included variables are shown in Table S1. Watersheds were only included 
in CART analysis if greater than 66% of the area had kriging estimates. This ensured that sufficient data was 
available to characterize groundwater nitrate conditions in the watershed, which resulted in 79% of the LP used 
in this analysis.

3. Results
3.1. Mapping Groundwater Nitrate Concentrations

We were able to gather chemistry data from, and geolocate, 76,724 drinking water wells sampled from 2006 to 
2015. These observed concentrations can be viewed as a map showing the well locations and geographic variabil-
ity for each aquifer (Figure 2). A majority (75%) of the drinking water wells in the study area harvest groundwater 
stored in the Quaternary-age aquifer system, although there are areas that rely on the Bedrock aquifer system to 
access drinking water. Quaternary aquifer wells are most densely located in the western and north central areas of 
the state, as well as a strip in the eastern portion, directly outside Detroit (Figures 2a–3). These areas correspond 
to glacial sediment features greater than 50 m thick (Soller & Garrity, 2018).

Groundwater nitrate concentrations across the study area range from non-detectable (detect limits ranged 
0.01–1 mg/L NO 3-N) to 59.1 mg/L NO3-N. Background concentrations of nitrate in Michigan range from 0 to 0.27, 
meaning even non-detectable samples in this study may be derived from anthropogenic sources (Dumouchelle 
et al., 1987). The western portion of the state consistently had areas of detectable nitrate concentrations, includ-
ing in the more sparsely populated northwestern region (Figures 1 and 2), with the highest concentrations found 
north of Grand Rapids (Figure 2a1) and south of Kalamazoo (Figure 2a2), both corresponding with intensive 
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agricultural areas. Across the study area, 26% of Quaternary wells have detectable nitrate (≥0.4 mg/L NO3-N) 
and 13% exceed 2 mg/L NO3-N, with the distribution shown in legend of Figure 2a. For both Quaternary and 
bedrock wells, distributions were highly skewed to non-detectable concentrations. MCL violations were observed 
in 1,023 wells (1.8%). Bedrock wells are primarily found in the eastern and south-central portions of the state, 
and only 7% of these wells had detectable concentrations (≥0.4 mg/L NO3-N, Figure 2b legend). The remaining 
analyses focus on Quaternary wells, due to their wide use for drinking water and closer relationship with surficial 
nitrogen loading processes where humans have more control than in deep bedrock aquifers (Figure 2a).

We used kriging to interpolate the point observations from the 57,469 Quaternary aquifer drinking water wells 
to create a continuous map layer of groundwater nitrate across the study area (Figure 3). Kriging creates both a 
smooth surface of predicted concentrations (Figure 3a) and probability layers for exceeding selected thresholds, 
here >0.4 mg/L NO3-N, which was the mode of the detection limits in the database (Figure S2A in Supporting 
Information S1), and >2 mg/L NO3-N (Figure S2B in Supporting Information S1). The probability of exceed-
ance can be understood conceptually through the lens of randomly drilling a new groundwater well (although in 
reality wells and settlements show clustered patterns). A new well drilled within a given watershed would have 
an expected probability of exceeding the threshold as shown in Figures 3b and 3c. However, as with all proba-
bilities, there may be localized areas within the watershed that will be both more or less likely to exhibit nitrate 
exceedance than the watershed median.

The interpolated data show a similar pattern of higher nitrate values in the western portion of the region as shown 
by the direct well observations (Figures 2 and 3). The probability map also highlights the extent of the study area 
that likely have detectable groundwater nitrate (Figure 3b) and where health risks from elevated nitrate may be a 
concern (Figure 3c). Much of the western half of the study area has median probabilities of exceeding 0.4 mg/L 
NO3-N of over 0.5 (50%) (Figure 3b). Specifically, 26% of the watersheds in the study area have a 50% or higher 
probability of having detectable nitrate in the groundwater (Figure 3d). In contrast, the probability of exceeding 
2 mg/L NO3-N is less than 25% for 98% of watersheds (Figure 3d). There are several regions (26 out of 1048 
watersheds) in the western LP from North to South that have greater than 25% probability of groundwater nitrate 
concentrations exceeding 2 mg/L NO3-N (Figure 3c).

Figure 2. Concentrations of NO3-N for drinking water wells sampled from 2006 to 2015. Legends show the distribution within each bin normalized to 100%. Black 
numbers denote general locations of major cities: 1) Grand Rapids, 2) Kalamazoo, and 3) Detroit.
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3.2. Analyzing Relationships Using CART

We used CART analyses to improve the understanding of processes driving patterns in groundwater nitrate 
concentrations. Results are shown in a “tree” created for each probability threshold (Figures 4 and 5a). For each 
“node” along the tree we report the average watershed probability of exceedance (Avg. E), number of watersheds 
(n), and the proportion reduction of error (PRE). The PRE in each node sums to the CART's total PRE, or ability 
to explain variability in the data set. Each node is then divided by a “split” condition for a single driver variable 
and threshold value, which are reported at each split. These splits create two new nodes until the group cannot be 
split further. These “terminal nodes” are the final CART groups. We used color to denote the rank (i.e., relative 
probability) among the terminal nodes, ranging from low to high probability (yellow to dark purple, respectively). 
We used these same colors corresponding to CART terminal node groups in visualizations of distributions and 
maps. Violin plots (Figures 4b and 5b) are a box and whisker plot overlain with a density plot representing the 
number of watersheds at each probability of exceedance along the x-axis (Hintze & Nelson, 1998; matplotlib 
version 3.1.1). These panels provide a nuanced view of our CART results through statistical and spatial lenses.

3.2.1. Probability of Nitrate Presence

Our CART analysis of the probability of detecting nitrate in groundwater (>0.4 mg/L) explained 42% of varia-
bility, with just four splits and five terminal groups. Watersheds were first split based on median annual recharge 
(mm/yr), which is how much water percolates through the subsurface to reach groundwater. Watersheds were 
split on recharge of 250 mm/yr, explaining 25% of variability within the data set. Roughly 41% of watersheds 

Figure 3. Nitrate estimates for the quaternary aquifer based on samples from 2006 to 2015: (a) Predicted NO3-N concentration clipped to areas of confidence at 
250 m resolution, (b) median probability of exceeding 0.4 mg/L NO3-N at HUC12 watershed level, which is the most common detection limit in this region during this 
sampling period. (c) Median probability of exceeding 2 mg/L NO3-N at HUC12 watershed level. (d) Cumulative frequency of watersheds at both exceedance levels. 
Note: Low median probabilities can be of significant consequence at local scales.
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had recharge greater than this split. Regardless of recharge, the next split was near-surface SOC (at 0–5 cm depth 
below the surface). Here, lower recharge watersheds were split at 774 g C/m 2 and higher recharge watersheds 
were split at 756 g C/m 2. Both of these split values are relatively low, as approximately 82% of watersheds had 
higher average SOC than the average of these split values. On both sides of the tree, lower SOC split out water-
sheds with some of the highest probabilities of groundwater nitrate detection (49% D3, 60% D4). Watersheds 
with lower recharge and higher SOC had the lowest probability of groundwater nitrate detection (12%, D1). High 

Figure 4. Detectable (>0.4 mg/L NO3-N) nitrate classification and regression tree (CART) results. (a) Decision tree 
produced by CART for detectable nitrate (>0.4 mg/L NO3-N). Avg. E. refers to the average exceedance probability in the 
group. Variables and thresholds are shown beneath each node. Final groups are labeled with D1–D5, where D1 is the lowest 
exceedance probability and D5 is the highest. n shows the number of watersheds in each group. Proportional reduction in 
error (PRE) refers to the variability explained by each group, where each node PRE sums to the Total PRE. (b) Distributions 
shown in violin plots for each CART group. (c) Watershed-level map colored by CART group. Note: Low median 
probabilities can be of significant consequence at local scales.
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recharge and high SOC watersheds on the right portion of the tree were further split by grassland land use/cover, 
where watersheds with more grassland also had very high probabilities of nitrate detection (60%, D5).

The violin plots (Figure 4b) show the distribution of data in each terminal node. Notably, the extreme groups 
(D5 and D1, respectively) have the tightest distribution, indicating that the watersheds within those groups have 
similar probabilities. Alternatively, the two highest groups (D5 and D4) have the same median values (60%) but 
the distributions are very different. Though the median probability of nitrate detection in these watersheds is 
60%, those in group D4 have a more uniform distribution across the full range of probabilities while watersheds 
in group D5 are clustered around the median value.

Figure 5. Elevated nitrate (>2 mg/L NO3-N) classification and regression tree (CART) results. (a) Decision tree produced 
by CART for median watershed nitrate >2 mg/L NO3-N. Avg. E. refers to the average exceedance probability in the group. 
Variables and thresholds are shown beneath each node. Final groups are labeled with E1–E6, where E1 is the lowest 
exceedance probability and E6 is the highest. N shows the number of watersheds in each group. Proportional reduction in 
error (PRE) refers to the variability explained by each group, where each node PRE sums to the Total PRE. (b) Distributions 
shown in violin plots for each CART group. (c) Watershed-level map colored by CART group. Note: low median probabilities 
can be of significant consequence at local scales.
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Given that recharge is the first split in the CART analysis, it is not surprising that we see the geographic distri-
bution of the five CART groups follow a similar East-West divide that we describe previously in Figure 3 as 
being possibly driven by distribution of recharge in the region (Figure 1e). The eastern portion of the state is 
dominated by watersheds in CART group D1, with lower recharge and higher SOC (Figure 1d). A few areas in 
the east belong to other CART groups (primarily D2 and D3). Higher nitrate probability clusters are found in the 
northwestern LP and southwestern LP, classified in groups D3, D4, and D5. D4 and D5, the two highest groups 
with 60% probability of exceedance, are differentiated spatially (D4: SW; D5: NW). The North-South D4 cluster 
stretching from the SW to South-central corresponds to a band of low SOC (Figure 1d) and significant industrial 
agriculture (Figure 1d).

3.2.2. Probability of Exceeding 2 mg/L NO3-N

The relationship between the probability of nitrate within a watershed exceeding 2  mg/L NO3-N (where the 
potential for health concerns rises) and the landscape and geologic properties possibly driving those differences 
is shown in Figure 5. This CART analysis explained 45% of the variability in these watersheds with six terminal 
groups. The first split was on SOC at 0–5 cm depth and alone explained 18% of the variability in the data set. This 
SOC value here (745 mg C/L) is consistent with the range of values in the detectable CART analysis (Figure 4a; 
SOC splits = 756 and 774). Where SOC was higher (left side of Figure 5c), recharge of 244 mm/yr distinguished 
the two lowest probability groups (E1, E2), a bit less than the 250 mg/L NO3-N observed in Figure 4a. Within the 
16% of lower SOC watersheds, CART separated the remaining groups with chemical agricultural fertilizer inputs, 
soil hydraulic conductivity, and nitrogen fixation from legumes. Notably, chemical agricultural fertilizer inputs 
>44 kg/ha/yr at the watershed level isolated the highest probability group, where approximately 1 in 3 wells could 
exceed 2 mg/L (E6). Where fertilizer inputs were lower, watersheds split based on soil hydraulic conductivity. 
Lower soil conductivity, or slower water flow through soil, resulted in another low probability group (E4). A 
small subsection of 19 watersheds were isolated with higher conductivity. These areas had lower SOC but were 
less intensively fertilized and had lower conductivity than the highest groups (E5, E6). The last split separated 
2.5% of study area watersheds based on landscape nitrogen fixation inputs from legumes. Higher N Fixation is 
correlated with higher probability (E5), potentially related to corn-soy rotation agriculture was present within 
watersheds.

Distributions shown in violin plots for watershed probability >2 mg/L NO3-N (Figure 5b) generally had less 
variation than detectable groups (Figure 4b) as evidenced by distributions with rounded bumps and shorter lines. 
Groups E5 and E6 have significantly elevated probability compared to the remaining lower groups whose central 
tendencies clustered from 0% to 10%. Group E4 showed the most variability in group membership, as its values 
were primarily centered around 5% probability, but its 75th percentile whisker extended to 50% probability. 
Groups E1 and E2, where the majority of watersheds are classified due to their higher SOC, were both centered 
around 0%–5% probability, but did include some outliers that extended whiskers to ∼45% probability. Generally, 
these more concise violin plots for elevated nitrate suggest stronger in-group similarity than for detectable nitrate.

The spatial distribution for >2 mg/L (Figure 5c) shares some similarities with detectable nitrate, but isolates 
smaller clusters of watersheds with elevated nitrate probabilities and dampens the dominance of an east-west 
gradient. Groups E1 and E2, where SOC is higher, exhibit an East-West gradient related to differences in recharge. 
The smallest, highest probability groups (E5 and E6) are mainly in clusters in the southwest portion of the state. 
Group E6, the highest probability group, with only 11 watersheds are all in St. Joseph county, Michigan. This 
region is characterized by intensive row crop agriculture. The second highest probability group (E5) of 19 water-
sheds, is more dispersed. It includes cluster neighboring E6, but also appears in the west-central regions along 
the coast and further inland. Areas in the the northwestern LP that were classified as high probability of detecting 
nitrate (Figure 4c, D6) were grouped within the larger, low probability E1 and E2 groups in the >2 mg/L NO3-N 
CART (Figure 5c, E1 and E2).

4. Discussion
This work synthesizes a large database of nitrate concentrations in 76,724 drinking water wells across Michi-
gan's Lower Peninsula, interpolating this point data to cover the majority of watersheds (79%) with continuous 
estimates of groundwater nitrate concentrations, and contextualizes this in a human health and land management 
perspective. There is growing concern among health scientists that chronic exposure to levels of nitrate below 
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the current health standard of 10 mg/L NO3-N, even as low as ∼2 mg/L NO3-N, are linked to multiple cancers, 
adverse birth outcomes, and other negative health problems (Ward et  al.,  2005,  2018). We provide maps of 
nitrate levels in our study region as: observed concentration points (Figure 2), kriged concentrations (Figure 3a), 
kriged probabilities within watersheds (Figures  3b and 3c), and membership of watersheds to CART groups 
(Figures 4 and 5). These maps provide different views of geographical distribution of groundwater nitrate across 
our study region. The Kriged concentrations and probability maps are derived from observed data. The maps of 
CART groups provide a synthetic view that identifies watersheds where the probability of nitrate concentrations 
meet specific criteria (>0.4 and >2 mg/L) with the landscape characteristics that appear to be driving those 
spatial patterns. The most important distinction between observational maps (Figures 2 and 3) and CART maps 
(Figures 4 and 5) is that observational maps can be used to identify areas of risk whereas CART maps group 
watersheds by similar characteristics that are correlated with risk. CART seeks to explain patterns, but results in 
groups that may have a wide distribution of concentrations given the small number of terminal groups. For deci-
sion making purposes observed data are preferred, but the CART-identified landscape characteristics can help 
identify areas that are either at risk or could move into a higher risk level.

We found that a majority of drinking water wells (79%) in both Quaternary-age and bedrock aquifers had 
levels of nitrate below the data set's typical analytical detection limit of 0.4 mg/L NO3-N (Figures 2a and 2b). 
However, there were 11% of wells with concentrations ≥2 mg/L NO3-N, where health concerns may rise (Temkin 
et al., 2019; Ward et al., 2018). Interpolating these point observations to create a smooth surface map of ground-
water nitrate levels (Figure 3) allowed us to summarize results across watersheds, which is an aggregation scale 
that allows us to analyze relationships between landscape characteristics and groundwater concentrations, and 
spans the hydrologic pathways controlling groundwater nitrate concentrations.

We found that geologic characteristics associated with transport mechanisms (i.e., aquifer recharge, soil hydraulic 
conductivity), and landscape features commonly related to agriculture (i.e., SOC, nitrogen inputs from chemical 
fertilizers and fixation) have important relationships to groundwater nitrate concentration (Figures 4 and 5). The 
combinations of interpolation and watershed-based aggregation shown here better represent the distribution of 
concentrations across the landscape, and summarizes landscape characteristics affecting groundwater concentra-
tions. These landscape patterns are more appropriate to inform broader management decisions. Aside from the 
east-west gradient in risk noted above in Results, other prominent patterns in both the probability of detection 
and elevated levels (Figures 3 and 4) highlight areas of intensive row crop agriculture in the southwest, a mix 
of agriculture, forest and population centers in the west-central, and agricultural areas dominated by fruit crops 
in the northwest. We further evaluate the landscape factors related to these patterns in the discussion of CART 
results below.

4.1. Interpreting Groundwater Nitrate Concentrations and Risk

Our focus was to identify landscape characteristics that are correlated to risk of detection and elevated groundwa-
ter nitrate. Here, CART analysis of groundwater nitrate concentrations in small watersheds of Michigan's lower 
peninsula, a midwestern glacial landscape, identified aquifer recharge, SOC, agricultural nitrogen sources, and 
soil drainage properties (hydraulic conductivity) as key factors. This is generally consistent with other decision-
tree-based studies throughout the United States that find variables related to sources, soil properties, and recharge 
as important factors (Burow et al., 2010; Messier et al., 2019; Pennino et al., 2020; Ransom et al., 2017; Tesoriero 
et al., 2017; Uddameri et al., 2020). Burow et al. (2010) summarizes nitrate levels across the continental United 
States (CONUS) as highest in shallow groundwater beneath agricultural land composed of well-drained soil and 
oxic geochemical conditions, a useful description of the variety of driving components.

A general conceptual understanding emerges from the literature, supported by this study: elevated groundwater 
nitrate concentration requires a nitrogen source, vulnerable soil and aquifer properties (including physical and 
geochemical conditions), and sufficient transport mechanisms (Burow et al., 2010; Hansen et al., 2016; Liggett 
& Talwar, 2009; Nolan & Hitt, 2006). In our analysis, these all emerge as correlated factors: aquifer recharge 
(transport), fertilizer and fixation inputs (source), soil conductivity and SOC (vulnerability). We combine these 
factors into a conceptual model of groundwater nitrate risk, where risk is described via a combination of nitrate 
source, vulnerability, and transport factors (Figure 6).
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4.1.1. Source via Industrial Agriculture

Nitrogen sources, described either by discrete nitrogen inputs or agricultural 
land use, are identified as key drivers at multiple scales: CONUS (Burow 
et al., 2010; Nolan & Hitt, 2006; Pennino et al., 2020), Northern Wisconsin 
(Tesoriero et al., 2017), California's Central Valley (Nolan et al., 2014, 2015), 
and North Carolina (Messier et al., 2019). Our elevated nitrate risk CART 
outputs show that landscape nitrogen inputs from SENSEmap (Hamlin 
et al., 2020a, 2020b) better describe nitrate concentrations than agricultural 
land use. Neither SENSEmap nitrogen nor agricultural land use are strongly 
correlated with elevated nitrate via simple correlation (both r = 0.06). Never-
theless, the combination of low SOC, high chemical agricultural fertiliz-
ers, conductive soils, and high N fixation (a signal of soy/corn rotational 
cropping) effectively separate the highest risk watersheds from all others 
(Figure  5). These subtleties highlight the utility of considering both soil 
properties and individual nitrogen sources, as agricultural land use encom-
passes many crops, practices, and landscapes. Note that the thresholds iden-
tified here in our CARTs are watershed averages, including both agricultural 
and non-agricultural areas within the watersheds. Local N input rates can be 
much greater.

Notably our CART for probability of nitrate detection does not include nitro-
gen sources, instead only landscape factors such as groundwater recharge 
and SOC emerge as correlated variables. This is likely due to the ubiquity of 
nitrogen inputs from atmospheric deposition. Our SENSEmap inputs, shown 
in Figure 1f, make this clear. Fully 40% of the landscape across Michigan's 
Lower Peninsula has between 8 and 11 kg/ha/yr of N inputs, and another 20% 

only slightly less than 8 kg/ha/yr. While some background level of atmospheric deposition of N is due to natural 
processes alone (such as lightning strikes and atmospheric chemistry), current deposition over the study region 
is likely 2–3 times greater than prior to 1850 (Bala et al., 2013; Kanakidou et al., 2016). As a result, our CART 
for likelihood of detection does not find N source as a significant variable because there is enough of an N source 
everywhere. Those watersheds with lower probability of exceeding the detection threshold (0.4 mg/L NO3-N) 
have lower vulnerability and transport characteristics, as discussed below.

4.1.2. Vulnerability via Soils

Our analyses identified two soil characteristics that describe the vulnerability of an area to contamination from 
N sources: SOC and soil hydraulic conductivity. Well drained soil, closely related to hydraulic conductivity used 
here, has also been extensively identified elsewhere as an important descriptor of groundwater nitrate contamina-
tion risk (Burow et al., 2010; Messier at al., 2019; Nolan & Hitt, 2006; Tesoriero et al., 2017). SOC is a complex 
soil property dictated by geologic, climatologic, and biological processes along with a long history of land use 
disturbance and agricultural management. The SOC thresholds identified in both our detection and elevated 
nitrate CARTs effectively separates the bottom 20% of SOC levels in the study area's watersheds. While being a 
signature of geography and agricultural management in our study area, SOC also describes the complex microbial 
activity in soil. Soils depleted of or otherwise low in carbon may lack communities of microbes that use and retain 
nitrogen in the soil, resulting in more nitrate available for leaching. SOC may be acting as a proxy for the combi-
nation of management, physical soil properties, and geochemical conditions including both biological activity 
and redox conditions. The simple correlation between SOC and elevated nitrate exceedance is weakly negative 
(r = −0.18), but our analysis here shows a strong threshold response. Only those soils within the bottom 20% of 
SOC levels (generally <745–775 gC/m 2 in the top 5 cm of soil) had higher probabilities of detection or elevated 
groundwater nitrate. Soil organic matter, a similar variable not quantified in this study, was also identified as an 
important variable correlated to agricultural activity and clay content by Uddameri et al. (2020).

Our CART also reveals that soils with both high hydraulic conductivity (i.e., which allows rapid movement 
through the soil) and high nitrogen fixation from legumes (indicative of soy/corn rotation) have high risk of 
elevated nitrate levels. The map of locations where this group (E5) occurs (Figure 5c) shows two clusters that 

Figure 6. Risk model for high groundwater nitrate, along with associated 
landscape characteristics identified by our classification and regression tree 
analyses.
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are areas of mixed agricultural and forested watersheds (Figure 1b). Thus these are areas where locally intensive 
agriculture is intermixed with forested areas, atop vulnerable low SOC and high conductivity soils.

4.1.3. Transport via Recharge

Our results show that the ability to transport nitrate from the surface through the subsurface is a strong control 
on whether an aquifer's wells will have detectable nitrate, and a weak control on elevated nitrate levels. This is 
primarily due to the high mobility of nitrate in water. We would expect that well depth would feature importantly, 
as seen in a number of studies (Burow et al., 2010; Nolan et al., 2014; Tesoriero et al., 2017; Wheeler et al., 2015). 
However, in our analysis well depth was not a strong descriptor. This may be due to local practices and regulations 
regarding well depths that preclude shallow wells at the highest risk. Groundwater recharge is a complex varia-
ble that encompasses multiple processes, including precipitation, land cover, and soil properties (Healy, 2010). 
Recharge was also identified as an important variable in Northern Wisconsin (Tesoriero et al., 2017), a similar 
study area located near Michigan using similar analyses.

In continental US level studies, a key hydrologic transport variable was irrigation:precipitation ratios, which 
describes some of the highest nitrate concentration regions in the arid and semi-arid West (Nolan & Hitt, 2006; 
Pennino et  al.,  2020). Although Michigan is a humid region, irrigation is used extensively in southwest LP 
(Morenz et al., 2005) where we found nitrate levels to be the highest, but due to low accuracy in mapping irrigated 
areas (Xu et al., 2019) we did not include an irrigation variable. A variable describing irrigation-driven recharge 
may improve our CART and highlight another avenue in which agricultural management affects nitrate.

Our results stress the importance of geologic and climatic conditions for groundwater nitrate concentrations. 
Notably, precipitation regimes will likely vary under climate change (IPCC, 2021), meaning the precipitation 
driver in recharge may change the transport of nitrate to groundwater. Climate change is projected to increase 
the frequency of intense, but sporadic, precipitation events, which may create pulses of higher nitrogen loading 
to groundwater and spikes in drinking water (Bowles et al., 2018; Congreves et al., 2016). These near-surface 
changes will then propagate through groundwater, subject in some cases to long travel times that generate a 
legacy of prior land use (Pijanowski et al., 2007; Martin et al., 2011, 2017).

4.2. Limitations and Bias of Study

Sources of uncertainty include well nitrate measurements, kriging methods, modeled inputs, CART interpre-
tation, and variables not included in the current analysis. These sources of uncertainty also provide avenues of 
future work and improvements to this study. The nitrate data set that drives this analysis is limited by non-random 
spatial sampling (e.g., samples are only collected where humans are settled, use wells, and at depths the wells 
were screened) and variable physical conditions for samples (e.g., water table elevation, season, well depth). This 
non-random spatial sampling can produce inconsistencies if results are interpreted for largely unsettled areas; for 
this reason we limited our analysis to sufficiently sampled watersheds (>66% confidently estimated interpolated 
area, see Section 2). Although there is considerable variability in physical conditions when sampling, this is likely 
dampened in the interpolation and analysis from a large number of samples under different environments and 
the 10-year aggregation period. Future analyses may subset well samples into more specific groups representing 
similar seasons and well depths.

This study provides a conservative estimate of nitrate concentrations and risk, as the more numerous low concen-
trations dampen the effect of elevated concentrations in EBK and CART. Although a powerful tool to interpolate 
based on spatial autocorrelation, kriging uses a built-in error term that can result in differences between observed 
and estimated points. Because households are often established in areas of development interest (e.g., lakes) or 
proximity to roads, this creates a spatial bias that then propagates to well water samples. Due to this sample bias 
for settled areas, samples are often clustered and may have a wide range of concentrations across a relatively 
small area. Additionally, wells with high nitrate concentrations may be abandoned for new wells or for alternative 
drinking water sources (e.g., bottled water, city water), resulting in a dominance of low nitrate wells in the data 
set. Therefore, kriging produces a conservative estimate of mean watershed-level nitrate concentrations when 
compared to the sample mean (Figure S3 in Supporting Information S1). This conservative estimate is further 
transferred to the watershed-summarized exceedance probability used in CART, meaning exceedance probabili-
ties are also biased to lower nitrate concentrations. This can also cause difficulty in our CART's ability to create 
homogenous groups since the number of target watersheds are outnumbered and can in some cases be considered 
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a rare event (DeSimone & Ransom, 2021; Krawczyk, 2016). Each of these complexities add levels of conserva-
tism such that our interpolation and CART results should be interpreted as minimum expectations.

The chosen analysis method, CART, brings its own limitations and considerations. Conclusions drawn from 
CART analysis are limited by the geographic scope of the data set and correlates selected for the analysis. Since 
the analyzed CARTs explain approximately 45% of variation, other important driver variables may not be pres-
ent. Less aggressive “pruning” rules (e.g., allowing for more groups) would increase the variation explained, 
but decrease the transferability of results by allowing the decision tree to select non-significant random varia-
bility for splits. The variables included largely focus on surface processes when more deep subsurface variables 
may be needed to explain the patterns. This bias in surface-focused variables is due to the relative difficulty in 
obtaining and modeling subsurface data (e.g., aquifer recharge, flowpaths, geologic properties, geochemical and 
redox conditions) compared to surface and near-surface processes that are more accessible to study, although 
future studies will utilize recently released subsurface datasets (Erickson et al., 2021; Starn et al., 2021; Zell 
& Sanford,  2020). CART's relatively simple tree-based output is supplemented by detailed results that were 
analyzed by the authors but not presented here. Specifically, for every split, the rpart CART algorithm used 
here presents alternate (though lower performing) possible splitting variables and thresholds. Future work may 
use more complex tree-based methods (e.g., boosted regression trees, random forest) that may provide addi-
tional information, and may be able to predict nitrate conditions in unsampled regions and make use of the data 
collected in earlier decades. We believe CART offers advantages in this study compared to other methods for 
more clear interpretation and categorizing of watersheds to understand driving processes.

5. Conclusions
Overall, the vast majority of the LP of Michigan has generally low nitrate levels, but we encourage careful 
management of vulnerable geologic areas characterized by well drained soil, high recharge, and low SOC. By 
focusing on recent and lower nitrate concentrations, we provide a preemptive look at where risks may be elevated 
in the future, encouraging management changes and precaution today. Beyond the possibility of nitrate concentra-
tions rising above policy-identified action levels (i.e., 5–10 mg/L NO3-N), there is substantive concern of health 
risks from prolonged exposure to elevated concentrations above 2 mg/L NO3-N. In Michigan, wells in 11% of 
watersheds have a greater than 10% probability of exceeding this nitrate threshold today, with risks that may be 
changing substantially in the future. While these seem like low numbers, elevated drinking water nitrate for 1 in 
10 households in a watershed is a substantial concern. Knowing where risk is elevated due to source, vulnerabil-
ity, and transport factors can help managers protect current water resources and assure clean drinking water for 
new development.

Although humans have control over the nitrogen sources applied, these geologic and climatic vulnerability drivers 
make today's management decisions in these areas critical. With this data set, future work can identify geographic 
areas where these risk factors can be related to epidemiological datasets of health outcomes. Such studies would 
add to the growing body of literature on adverse health effects from nitrate and could help identify regional driv-
ers of elevated nitrate concentration. As this body of literature strengthens, pressure to lower the nitrate MCL 
at the federal or state levels may increase. In Michigan, there is already regulation to conduct further suitability 
analysis for new developments where samples are greater than 5 mg/L, which is half the MCL (MI R 562.414).

To our knowledge, this is the first public visualization of this massive and important data set. This unprecedented 
amount of data is invaluable to analyze groundwater nitrate, and its relationships to both the landscape and the 
people relying on those groundwater resources. However, this data set was difficult to utilize despite consistent 
collection since the 1980s. Due to privacy issues, it could only be obtained via FOIA and was not prepared for 
modern GIS or data science procedures. Significant work went into obtaining, spatially referencing, and assuring 
quality of measurements to allow the data to be used for scientific study. We hope that regulatory agencies will 
continue to share data and encourage broader use for scientists who can help address environmental hazards.

This study utilizes an extensive database including 121,492 drinking water nitrate well measurements across 
Michigan's Lower Peninsula (2006–2015) in tandem with a suite of variables to identify drivers of ground-
water nitrate concentrations using CART analysis. This analysis was consistent with conceptual models about 
groundwater nitrate behavior, showing higher concentrations require a nitrogen source, vulnerable soil/geologic 
characteristics, and sufficient transport mechanisms. These were identified as correlates to concentrations in 
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the form of nitrogen inputs from agricultural fertilizer and fixation, soil properties of conductivity and organic 
carbon content, and aquifer recharge. This extensive data set can be used in future studies linking negative health 
outcomes to drinking water nitrate intake and identify populations at risk given landscape features.
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